ответ: а=7 см, b= 4 см.
Объяснение:
"периметр прямоугольника равен 22 см. Если одну из его сторон уменьшить на 1 см, а вторую увеличить на 2 см, то достанем прямоугольник, площадь которого на 8 см2 больше чем площадь начального прямоугольника. Найдите стороны исходного прямоугольника"
***
Р =2(a+b), где а и b - размеры первоначального прямоугольника.
(а-1) см, (b+2) - размеры нового прямоугольника.
S1=ab см² - площадь первоначального прямоугольника;
S2=(a-1)(b+2) - площадь нового прямоугольника.
S2-S1=8 см².
(a-1)(b+2) - ab=8;
2(a+b)=22;
Это система уравнений. Решаем её:
ab+2a-b-2-ab=8;
2a-b=10;
a+b=11;
a=11-b;
2(11-b)-b=10;
22-2b-b=10;
-3b=-12;
b=4 см;
a=11-b=11-4=7 см.
Проверим:
периметр Р=2(4+7)=2*11=22 см. Всё верно!
ответ:
y = x^4 – 2x^2 – 8.
найдем координаты точек пересечения графика функции с осью абсцисс (х).
x^4 – 2x^2 – 8 = 0.
произведем замену: а = x^2, a^2 = x^4.
a^2 – 2а – 8 = 0.
дискриминант:
d = 2^2 – 4*(-8) = 4 + 32 = 36.
a1 = (2 + √36)/2 = (2 + 6)/2 = 8/2 = 4.
a2 = (2 - √36)/2 = (2 – 6)/2 = -4/2 = -2 – данное значения не подходит, потому что x^2 не может быть ниже нуля.
x^2 = 4 ⇒ х1 = 2, х2 = -2.
уравнение касательной:
у = f(x0) + f ‘(x0)(x – x0).
1. x0 = x1 = 2.
f(x0) = 2^4 – 2*(2^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*8 – 4*2 = 32 – 8 = 24.
уравнение касательной:
у1 = 24(x – 2) = 24х – 48.
2. x0 = x1 = - 2.
f(x0) = (-2)^4 – 2*((-2)^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*(-8) – 4*(-2) = -32 + 8 = -24.
уравнение касательной:
у2 = -24(x + 2) = -24х - 48.
3. чтобы найти точку пересечения касательных у1 = 24х – 48 и у2 = -24х - 48, приравняем их правые части и найдем координату х:
24х – 48 = -24х - 48;
24х + 24х = - 48 + 48;
48х = 0;
х = 0/48;
х = 0.
у1 = 24*0 – 48 = 0 – 48 = -48.
ответ: (0; -48).
неверно написано условие
2)x+6=5+4x
х - 4х = 5 - 6
- 3х = - 1
х = 1/3
3)13-3(x+1)=4-5x
13 - 3х - 3 = 4 - 5х
-3х +5х = 4 + 3 - 13
2х = -6
х = -3
4)0,2(3x-5)-0,3(x-1)=-0,7
0,6 х - 1 - 0,3х + 0, 3 = - 0,7
0,3х = -0,7 - 0,3 + 1
0,3 х = 0
х =0