существует два перевода из периодической дроби в обыкновенную:
1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать
столько нулей, скока цифр между запятой и первым периодом: 0,11(6)
116-11 105 7
0,11(6)===
900 900 60
235-2 233
0.2(35)= =
990 990
2)
а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.
б)Найдем значение выражения X · 10k
в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.
г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.
0,11(6)=Х
k=1
10^(k)=1
тогда x*10=10*0,116666...=1,166666...
10X-X=1,166666...-0,116666...=1,16-0,11=1,05
9X=1,05
105 7
X==
900 60
0.2(35):
k=2
10^k=100
100X=0.2353535...*100=23,535353
100X-X=23,535353-0.2353535=23,3
99x=23,3
233
x=
900
у=(2-3x) (3-2x) (2x-1)
Решаем уравнение:
(2-3x) (3-2x) (2x-1) = O
2-3х = 0 или 3-2х = 0 или 2х-1 = 0
-3х = -2 -2х = -3 2х = 1
х= 2/3 х=3/2 х=1/2
Отмечаем эти точки на числовой прямой и расставляем знаки функции. Знаки чередуются:
- + - +
[1/2][2/3][3/2]
ответ. [1/2; 2/3] U [3/2;+∞)