В условии не сказано главного: каждое число встречается только один раз. То есть у Васи есть 22 карточки с числами от 1 до 22 и из них он должен составить пары. Поэтому максимум 10 пар. Больше просто не получится.
Первое, что на ум приходит, простые числа 17 и 19 не найдут себе пары. Их придется вычеркнуть.
У простого числа 11 единственная пара 22. Тогда простому числу 13 останется только 1. Оставшиеся 16 чисел пары себе находят.
Таким образом, поскольку 2 числа мы исключили (17 и 19), то число пар (22-2)/2=10
1. Количество всех возможных вариантов набора = 10^4 = 10000.
Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр).
Для одной позиции = 10 вариантов.
Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100.
Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов.
Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов.
2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр).
Для одной позиции = 10 вариантов.
Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).