тільки я дала по нумерації питань
Відповідь:
питання 3 (1; 3)
питання 5 (3; 1)
питання 6 (3;0)
питання номера не видно, але прямі не пертинаються : 0
Пояснення:
Питання 3 Розв'язком є координати точки перетину х=1, у=3
Відповідь: (1; 3)
Питання 5 Розв'язком є координати точки перетину х=3, у=1
Відповідь: (3; 1)
питання 6 Розв'язком є координати точки перетину х=3, у=0 (3;0)
Відповідь: (3; 0)
питання номера не видно, але прямі не пертинаються
це паралельні прямі
х+2у-5=0 → у= -0,5 х+2,5
2х+4у+3=0 → у= -0,5х - 0,75
Прямі параллельні , бо в них рівні кутові коефіцієнти k= - 0,5.
Система рішень немає
Відповідь: 0
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
У(-3/12)
Б)аналогично