Классическое решение делается в двух основных частях:
1) Поиск ОДЗ – область допустимых значений. 2) Решение уравнения.
Немного о первом. Все семь основных арифметических действий – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении а у другого :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что но одновременно с тем как бы и Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.
Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как Корни этого нелинейного уравнения, как легко понять: и или в короткой записи что равносильно где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: Корни этого нелинейного уравнения, как легко понять: где сам «арифметический квадратный корень» – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.
Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим
Объяснение:
1. Преобразуйте в многочлен:
1) (a + 4)²=a²+8a+16 2) (3у - с)²=9y²-6cy+c²
3) (2a - 5)( 2a + 5) =4a²-25 4) (x² + y)( x² - y)=x^4-y²
2. Разложите на множители:
1) 0,36 – с²=(0,6-c)(0,6+c) 2) 5a² + 10a=5a(a+2)
3) 16x² – 49=(4x)²-7²=(4x-7)(4x+7)
3) Упростите выражение: (m - 1)(т + 1) - (т - 3)=mt-2t+m+2
4. Выполните действия:
a) 3(1 + 2xy)( 1 - 2xy) =3(1-4x²y²)=3-12x²y² б) (x²-y)=(x-√y)(a+√y)
5. Решите уравнение: (x - 2)(x + 2) - x(x + 5) = - 8
X²-4-x²-5x=-8
-5x=-4
X=4/5=0,8