1) Номер не может начинаться с 0.
Значит, на 1 месте любая из 6 цифр, кроме 0 (6 вариантов).
На 2 месте любая из 6 оставшихся, в том числе и 0 (6 вариантов).
На 3 месте любая из 5, потом любая из 4, и, наконец, любая из 3.
Всего 6*6*5*4*3 = 2160 вариантов.
2) На 1 и последнем местах цифры 1 и 9.
Либо 1 _ _ _ 9, либо 9 _ _ _ 1.
В каждом случае 5*4*3 = 60 вариантов. Всего 120 вариантов.
3) Цифры 5 и 7 стоят рядом, и они есть обязательно. Варианты:
57 _ _ _; _ 57 _ _; _ _ 57 _; _ _ _ 57; 75 _ _ _; _ 75 _ _; _ _ 75 _; _ _ _ 75.
Всего 8*5*4*3 = 40*12 = 480 вариантов.
8. Сочетания.
Водители:
C(2,8) = 8*7/2 = 56/2 = 28.
Но у нас чётко обозначено: один рулевой, второй штурман.
Поэтому умножаем на 2 и получаем 56.
Механики:
C(3, 12) = 12*11*10/(1*2*3) = 2*11*10 = 220.
Всего команд 56*220 = 12320
9. Тоже сочетания
С(5, 18) = 18*17*16*15*14/(1*2*3*4*5) = 3*17*4*3*14 = 51*12*14 = 8568 вариантов.
План-конспект урока
Алгебра
8 класс
Тема: Доказательство неравенств
Цель:
Образовательная: формирование умений доказательства неравенств, формирование
Этапы занятия:
Организационный момент.
Актуализация опорных занятий.
Усвоение новых знаний и действий.
Первичное закрепление знаний и действий.
Контроль и самопроверка знаний, рефлексия.
Подведение итогов занятий.
ХОД ЗАНЯТИЯ
1. Организационный момент. Подготовка учащихся к работе на занятии.
2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.
а) С неравенств сравниваются большие и малые величины;
b) Во С какого приема мы умеем доказывать неравенство вида aответ:
- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);
c) Повторим данное доказательство на примере неравенства Коши.
“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 
Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.
Значит,  – верное неравенство.
3.
a) Во Попробуем сформулировать другой прием.
ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:
(a-b)2  0, (a+b)2  0 или неравенства Коши  , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;
b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.
Доказательство: Рассмотрим a+b и ab+1.
Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.
Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.
4. Докажем: 
Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.
Значит, данное неравенство  верно.
Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?
ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)
Объяснение:
как то так, неуверен
решение:
х=4