М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Данька228228
Данька228228
13.02.2020 17:06 •  Алгебра

1)x-100x⁻¹=0 2)25x-x⁻¹=0 3)64x+x⁻¹=-16 рациональные уравнения опишите решение

👇
Ответ:
xmaxim99
xmaxim99
13.02.2020

1) x - 100/x = 0

Домножим уравнение на х:

x^2 - 100 = 0

x^2 = 100

x = 10 или x = -10

2) 25x - 1/x = 0

25x^2 - 1 = 0

x^2 = 1/25

x = 1/5 или x = -1/5

3) 64x + 1/x = -16

64x^2 + 1 = -16x

64x^2 + 16x + 1 = 0

x = -0.125 

4,7(8 оценок)
Ответ:
ник4858
ник4858
13.02.2020

x-100x⁻¹=0

x-100/x=0 умножим левую и правую часть на х, х не равно нулю

получим x^2-100=0

x^2=100

х1=-10 х2=10

2)25x-x⁻¹=0

2)25x-1/х=0  умножим левую и правую часть на х

25x^2-1=0

x^2=1/25

х1=1/5  х2=-1/5

3. 64x+x⁻¹=-16 умножим левую и правую часть на х

64x^2+1=-16x

64x^2+16x+1=0

решаем квадратное уравнение

Д = 16*16-4*64=256-256=0 следовательно один корень

х=-16/2*64

х=-1/8

 

 

 

 

4,8(21 оценок)
Открыть все ответы
Ответ:
bodnarhuk83
bodnarhuk83
13.02.2020
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях.
2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не  принадлежит графику функции y=x^2.
4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.

Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. 
Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти.
Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции. 
Известно, что точка а (a; b) принадлежит функции y=x^2 принадлежит ли графику этой функции точка b (
Известно, что точка а (a; b) принадлежит функции y=x^2 принадлежит ли графику этой функции точка b (
4,4(59 оценок)
Ответ:
sergantmomo
sergantmomo
13.02.2020
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.

2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) =  (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решить 1) записать уравнение касатальной к графику функции f(x)=4x-sinx+1 в точке x0=0 2) найти знач
4,5(70 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ