Объяснение:
Периметр прямоугольника:
P=2(a+b) , где
a - длина, см;
b - ширина, см.
Площадь 1-го квадрата:
S₁=a², где a - сторона 1-го квадрата (она же длина прямоугольника), см.
Площадь 2-го квадрата:
S₂=b², где b - сторона 2-го квадрата (она же ширина прямоугольника).
Система уравнений:
26=2(a+b); a+b=26/2; a+b=13; b=13-a; b²=(13-a)²
85=a²+b²; b²=85-a²
(13-a)²=85-a²
169-26a+a²-85+a²=0
2a²-26a+84=0 |2
a²-13a+42=0; D=169-168=1
a₁=(13-1)/2=12/2=6; b₁=13-6=7
a₂=(13+1)/2=14/2=7; b₂=13-7=6
ответ: 6 см и 7 см.
Объяснение:
Выносим общий множитель √2*sinx за скобки
√2*sinx*(2-cosx)+cosx-2=0
Выносим знак минус за скобку
√2*sinx*(2-cosx)-(2-cosx)=0
Выносим за скобку общий множитель 2-cosx
(2-cosx)*(√2*sinx-1)=0
2-cosx=0 или √2*sinx-1=0
1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так
х^2+(х+7)^2=13^2;
х^2+х^2+14х+49-169=0;
2х^2+14х-120=0(:2);
х^2+7х-60=0;
Д=289;
х=-12;х=5
5 см - один катет;
5+7=12(см)- второй катет