Данное двойное неравенство равносильно системе двух квадратных неравенств:
Первое неравенство .
Заметим, что в левой части скрывается квадрат разности (формула ):
.
Неравенство принимает следующий вид: .
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: и
.
Значит, первой неравенство эквивалентно тому, что .
Второе неравенство .
Вс уравнение имеет по теореме Виета (утверждающей, что
и
) корни
и
.
Из этого следует разложение левой части на множители: .
Метод интервалов подсказывает решение .
+ + + - - - + + +
__________________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что .
Имеем значительно более простую систему неравенств:
Вполне понятно, что ее решением является (как пересечения двух промежутков).
Или же .
Задача решена!
ответ:y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение: