Назрин8, в вашем условии неточность. В том виде, в котором уравнение представлено сейчас, это тождество не только не доказывается, но и вообще в левой и правой части уравнения стоят стоят разные вещи (возьмите для интереса и сравните их в том же маткаде).
Могу предположить, что вы забыли дописать "х" во второй скобке и будет там (3х + 4x^2), и множитель 2 за скобками всё же в первой степени, а не второй. Тогда левая часть легко сворачивается как разность квадратов:
1) Первое уравнение параболы. Если коэффициент перед х² отрицателен, то ветви её идут вниз. Для построения надо задаться значениями х и по формуле высчитать значения у. По этим данным строится кривая. Второе уравнение - прямая у = -х. Она пересекает параболу в двух точках: х₁ = 2,56 х₂ = -1,56. Вот данные для параболы: х -3 -2 -1 0 1 2 3 4 у=-x^2+4 -5 0 3 4 3 0 -5 -12 Точки пересечения можно определить аналитически, решив систему: у = -х²+4 у = -х Если из второго уравнения вычесть первое, то получим квадратное уравнение х²-х-4=0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-1)^2-4*1*(-4)=1-4*(-4)=1-(-4*4)=1-(-16)=1+16=17; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√17-(-1))/(2*1)=(√17+1)/2=√17/2+1/2=√17/2+0.5≈2.56155281280883; x_2=(-√17-(-1))/(2*1)=(-√17+1)/2=-√17/2+1/2=-√17/2+0.5≈-1.56155281280883. 2) Решается аналогично.
Если сумма цифр в числе делится на 9, то само число делится на 9.Найдём сумму цифр числа 513: 5+1+3=9 делится на 9.
2)
Если число десятков в числе, сложенное с учетверённым числом единиц
кратно 13, то число делится на 13.
19682 ---> 1968+4*2=1976
Далее опять применим этот признак: 197+4*6=221
Опять применим признак: 22+4*1=26
Число 26 делится на 13: 26:13=2 , поэтому и заданное число делится на 13.