1. Перемножив все и вся получаем 6х в квадрате + 27х-10х-45. Так как это квадратное уравнение, решим через дискриминант 6х квадрате + 17х-45=0 D=17 в квадрат-4*6*(-45)=1369 х1=-17-37(корень из дискриминанта) делим на 12= -54/12 х2=-17+37 делим на 12=20/12
2.Раскрываем скобки м в кубе - м в квадрате + 3м+м в квадрате - м + 3 = м в кубе + 2м + 3
3.получается у в квадрате + 6у - 8=0.
Решаешь все через дискриминант, формула в в квадрате - 4ас. А корни находишь так -в(плюс или минус) корень из дискриминта и все деленное на 2а.
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74) и (7,35/√24,49/√24)
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49 ab=35 a^2+b^2=49
a=35/b откуда b^4-49b^2+1225=0 D<0 то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.