Пусть х -длина прямоугольника, у - ширина. Тогда площадь S = xy.
1-е увеличение.
х + 5 - новая длина прямоугольника, у + 4 - новая ширина прямоугольника.
S1 = (x + 5)(у + 4) = ху + 5у +4х + 20
Увеличение площади: S1 - S = ху + 5у +4х + 20 - xy = 5у +4х + 20.
По условию это 113 кв.м
5у +4х + 20 = 113 (1)
2-е увеличение.
х + 4 - новая длина прямоугольника, у + 5 - новая ширина прямоугольника.
S2 = (x + 4)(у + 5) = ху + 5х +4у + 20
Увеличение площади: S2 - S = ху + 5х +4у + 20 - xy = 5х +4у + 20
По условию это 116 кв.м
5х +4у + 20= 116 (2)
Решим систему уравнений (1) и (2)
Умножим (1) на 4, а (2) на 5
20у +16х + 80 = 452
25х +20у + 100= 580
Вычтем из нижнего уравнения верхнее
9х = 108
х = 12
Умножим (1) на 5, а (2) на 4
25у +20х + 100 = 565
20х +16у + 80 = 464
Вычтем из верхнего уравнения нижнее
9у = 81
у = 9
Объяснение:
|x -1| + |x +3| ≤ 4
Решим это неравенство методом интервалов.
Найдем нули подмодульных выражений:
х - 1 =0 → х = 1
х + 3 = 0 → х = - 3
Эти значения разбивают числовую ось на три интервала:
х ∈ (-∞; - 3] ; (-3; 1]; (1; + ∞)
Решим заданное неравенство на каждом из этих промежутков.
1) 1) x∈ (-∞; - 3], при этом неравенство примет вид:
- (х - 1) - (х + 3) ≤ 4
-х + 1 - х - 3 ≤ 4
-2х ≤ 6
х ≥ - 3
Пересекая найденное решение x∈ [- 3; +∞) c рассматриваемым интервалом x∈ (-∞; - 3] , получаем решение x = - 3
2) х ∈ (-3; 1]
- (х - 1) + х + 3 ≤ 4
0*х ≤ 4 → х - любое число. Учитывая интервал, х х ∈ (-3; 1]
3) х ∈ (1; + ∞)
х - 1 + х + 3 ≤ 4
2х ≤ 2
х ≤ 1 → х ∈ (- ∞; 1]
Для получения окончательного ответа объединим полученные решения:
x ∈ [- 3] ∪ (-3; 1] ∪ (- ∞; 1]
ответ: х ∈ [-3; 1]
(x-y)(2+c) ну как то так))