Пусть X-скорость мотоциклиста, а Y- скорость велосипедиста. Мы знаем, что скорость умножить на время=расстояние.Значит, 2X=5Y( т к на одно и тоже расстояние у мото-та ушло 2 часа, а у вело-та 5 часов).Мы имеем уравнение 2X=5Y/5Y(делим на 5Y) 2X/5Y=1 или 0,4X/Y=1 X/Y=1/0,4 X/Y=10/4 X/Y=2,5 X=2,5Y(скорость мотоциклиста в 2,5 раза больше скорости велосипедиста).Теперь при дальнейшем решении мы можем заменить X на 2,5Y. Так как мы знаем, что скорость вело-та на 18км ч меньше скорости мото-та, то получаем следующее уравнение Y+18=X или Y+18=2,5Y 2,5Y-Y=18 1,5Y=18 Y=12( это скорость вело-та) X( скорость мото-та)=12+18(или 12 умн на 2,5)=30 12 умножить на 5 =60(расстояние между городами)
Комбинированные уравнения, в состав которых входит хотя бы одна неограниченная функция, следует попробовать решить, применив свойство монотонных функций.
Возрастающие и убывающие функции называются монотонными.
Если на области определения уравнения f(x) = g(x) функция f(x) возрастает (убывает), а функция g(x) убывает (возрастает), то тогда уравнение не может иметь более одного корня.
Можно сказать конкретнее и понятнее. Если функция y = f(x) монотонно возрастает (убывает), а функция y = g(x) монотонно убывает (возрастает) на некотором промежутке и х – корень уравнения f(x) = g(x), то он единственный на этом промежутке.
Пример 1. Решить уравнение .
Решение.
Область определения уравнения - все положительные числа ( ).
Кстати, для учеников существует проблема в применении понятий область определения уравнения и область допустимых значений (ОДЗ) переменной х. Аббревиатура ОДЗ приобрела самостоятельную жизнь и применяют ее, не понимая сути, иногда путая с допустимыми значениями функции. Любое уравнение можно привести к виду f(x) = 0 и считать уравнением частный случай функции у = f(x), когда она равна нулю. Область определения этой функции или допустимые значения переменной х - и есть область определения уравнения или область допустимых значений неизвестной переменной в этом уравнении.
Очевидно, что - корень уравнения.
Функция монотонно возрастает на всей области определения уравнения.
Функция монотонно убывает на всей области определения уравнения.
Следовательно, корень уравнения - единственный.
ответ: 2.
Пример 2. Решить уравнение: .
Решение.
Область определения уравнения: .
Функция монотонно возрастает на всей области определения уравнения.
Функция монотонно убывает на всей области определения уравнения.
Определить, есть ли у этого уравнения корень, попробуем графически.
Построим графики функций в одной системе координат. Из построенного графика видно, что функции пересекаются в точке .
Проверим, является ли число 1,5 корнем данного уравнения.
ответ: 1,5.
Пример 3. Решить уравнение: .
Решение.
Область определения уравнения: .
Функция монотонно убывает на всей области определения уравнения.
Координаты вершины параболы .
Квадратичная функция на области определения уравнения:
а) монотонно убывает при . Значения функции изменяются при этом на промежутке . Значения функции при меняются следующим образом: . Уравнение на этом промежутке корней не имеет.
б) монотонно возрастает при . Очевидно, что
Значит х = 4 – единственный корень данного уравнения.
ответ: 4.
Когда доказано, что функция в левой части уравнения монотонно возрастает (убывает), а в правой части - монотонно убывает (возрастает), то единственный корень уравнения, если он имеется, находят любым доступным
(5√t+7)*(25t-35√t+49)=(5√t)^3+343