Объяснение:
Пусть y = 2 , тогда x² = 9 и x = 3 , если x = 2 , то 2y² = 3 , а
полученное уравнение решений в натуральных числах не
имеет , пусть x ≠ 2 и y ≠2 , тогда x и y - нечетные числа :
x = 2k + 1 и y = 2m + 1 , подставим эти выражения в исходное
уравнение : 4k² +4k +1 - 2( 4m² + 4m + 1) = 1
или : 4k²+ 4k -8m²-8m = 2 ⇒ 2( k²+k - 2m² -2m ) = 1 , но
полученное уравнение не имеет решений в натуральных
числах , так как левая часть кратна 2 , а правая нет ⇒ ( 3 ; 2 )
- единственная пара простых чисел , удовлетворяющая
исходному уравнению
1)(3x^2-12)/(1-11x)>0
3(x^2-4)/(11(1/11-x))>0
3(x-2)(x+2)/(11(1/11-x))>0
+ - + -
(-2)(1/11)(2)
(-бескон.;-2)объединено(1/11;2)
2)243*(1/81)^{3x-2}=27^{x+3}
3^{5} *(3^(-4})^{3x-2}=(3^3)^{x+3}
3^{5} *3^{-12x+8}=3^{3x+9}
3^{5-12x+8}=3^{3x+9}
3^{13-12x}=3^{3x+9}
13-12x=3x+9
-12x-3x=9-13
-15x=-4
x=4/15
3)я не уверен, что ты правильно написал функцию проверь.
Мне кажется, что f(x)=1+8x-x^2, а не как у тебя 1+8-x^2
Решу для f(x)=1+8x-x^2
f`(x)=8-2x=2(4-x)
f`(x)=0 при 2(4-x)=0
4-x=0
х=4 принадлежит [2;5)
f(2)=1+8*2-2^2=1+16-4=13
f(4)=1+8*4-4^2=1+32-16=17-наибольшее значение
f(5)=1+8*5-5^2=1+40-25=16
4)2cos(x/2)+sqrt{2}=0
cos(x/2)=-sqrt{2}/2
x/2=pi- pi/4+2pi*n
x/2=3pi/4 +2pi*n |*2
x=6pi/4+4pi*n
x=3pi/2+4pi*n, n принадлежит Z
5)16^{x} -5*4^{x}=-4
(4^{x})^{2} -5*4^{x}+4=0 |t=4^{x}
t^2-5t+4=0
t1=1; t2=4
4^{x}=1 4^{x}=4^{1}
4^{x}=4^{0} x=1
x=0
ответ: 0;1
6) log_{\frac{1}{4}}\frac{3x+2}{2x-7}=-1
(3x+2)/(2x-7)=4
3x+2=4(2x-7)
3x+2=8x-28
3x-8x=-2-28
-5x=-30
x=6
Находим ОДЗ: (3х+2)/(2х-7)>0
3(x+2/3)/(2(x-3,5))>0
+ - +
(-2/3)(3,5)
(-бескон., -2/3) объединено(3,5;+бесконечность)
х=6 входит в область определения
ответ: 6
7)27^{x}<9^{x^2-1}
3^{3x}<3^{2x^2-2}
3x<2x^2 -2
2x^2 -3x-2>0
D=25
x1=2, x2=-1/2
8){x-y=7
{log-2(2x+y)=3
{x-y=7
{2x+y=8
y=8-2x
x-(8-2x)=7
x-8+2x=7
3x=15
x=5
y=8-2*5=-2
ответ:(5;2)
Подробнее - на -
Объяснение:
(3;2)
Объяснение:
Докажем сначала, что если x и y - натуральные числа и удовлетворяют этому уравнению (кстати, это частный случай диофантова уравнения, которое называют уравнением Ферма или уравнением Пелля), то либо x либо y делятся на 3 (точнее, ровно одно из них делится на 3, но для нашего решения это не важно). В самом деле, если x и y не делятся на 3, то
Итак, x или y делится на 3. Но по условию x и y - простые, поэтому x или y
равен 3.
1-й случай.![x=3\Rightarrow 3^2-2y^2=1; 2y^2=8; y^2=4; y=2.](/tpl/images/0306/6928/cff4e.png)
Поскольку 2 - простое число, получили решение (3;2).
2-й случай.![y=3\Rightarrow x^2-2\cdot 3^2=1; x^2=19.](/tpl/images/0306/6928/fbca2.png)
Такое уравнение не имеет решений в целых числах.