(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)
Объяснение:
(3 - х)(7х + 1) < 5х + 2
21х + 3 - 7х² - х < 5x + 2
-7x² + 20x + 3 < 5x + 2
-7x² + 20x - 5x + 3 - 2 < 0
-7x² + 15x + 1 = 0
D = 15² - 4 * (-7) = 225 + 28 = 253
√D = √253
x₁ = (-15 - √253) / (-7 * 2) = -(15 + √253) / (-14) = (15 + √253)/14 (примерно 2,207)
x₂ = (-15 + √253) / (-7 * 2) = -(15 - √253) / (-14) = (15 - √253) / 14 (примерно -0,06)
начертим координатную прямую (см. рис)
подставим -1 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - (-1)) * (7 * (-1) + 1) - 5 * (-1) - 2 =
= 4 * (-7 + 1) + 5 - 2 =
= -6 * 4 + 5 - 2 =
= -24 + 5 - 2 = -21
впишем в промежутке от -∞ до (15 - √253) / 14 знак "-"
подставим 0 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 0) * (7 * 0 + 1) - 5 * 0 - 2 = 3 * 1 - 2 = 1
впишем в промежутке от (15 - √253) / 14 до (15 + √253)/14 знак "+"
подставим 3 вместо х в неравенство (3 - х)(7х + 1) - 5х - 2 < 0 . Будет:
(3 - 3) * (7 * 3 + 1) - 5 * 3 - 2 = 0 - 15 - 2 = -17
впишем в промежутке от (15 + √253) / 14 до +∞ знак "-"
Неравенство принимает отрицательное значение в промежутках:
(-∞; (15 - √253) / 14) ∪ ((15 + √253) / 14; +∞)
найдём точку пересечения прямых
4y=3x ⇒ 12y=9x ⇒ 5x+12y=5x+9x=14x ⇒ 14x=10 ⇒ x = 5/7 ⇒ 4y=3·5/7=15/7 ⇒ y=15/28
найдём векторы нормали
-3x+4y=0 ⇒ n₁(-3;4)
5x+12y-10=0 ⇒ n₂(5;12)
Проверим, острый ли угол между n₁ и n₂ (равносильно n₁·n₂ > 0)
n₁·n₂=-3·5+4·12=-15+48 > 0
Находим единичные вектора нормали
n₁'=n₁/|n₁|=(-3;4)/√(3²+4²)=(-3/5;4/5)
n₂'=n₂/|n₂|=(5;12)/√(5²+12²)=(5/13;12/13)
Находим вектор нормали к биссектрисе острого угла между прямыми
n₃=n₁'+n₂'=(-14/65;112/65)
Другим вектором нормали будет n₃'=65/14 n₃=(-1;8)
Составляем уравнение биссектрисы по точке (5/7;15/28) и вектору нормали n₃
n₃'·(x,y)=n₃'·(5/7;15/28) ⇒ -x + 8y = -5/7 + 8 ·15/28 = 25 / 7, или
-7x + 56y = 25
другой возможный вариант решения, использовать тот факт, что любая точка биссектрисы равноудалена от двух данных прямых, и формулу расстояния от точки до прямой
|4y-3x|/√(4²+3²) = |5x+12y-10|/√(5²+12²)
13|4y-3x| = 5|5x+12y-10|
13(4y-3x) = ±5(5x+12y-10)
Один вариант знака даёт биссектрису острого угла, второй — биссектрису тупого угла, потом останется только разобраться, какой вариант к какой биссектрисе относится.
Значит чтобы найти путь, нужно просуммировать скорости, которые имеет точка в каждый момент времени. в момент ноль просуммировать не получится, т.к. знаменатель устремится в бесконечность (для 10 класса недопустимо).
Я правильно понял, что cos(пи*Т) или все же Тcosпи? в любом случае, готов перерешать в случае чего.
ну вот мы это суммируем и получается что-то вроде
1/1 *cos пи +1/корень(2) *cos (2пи)+1/корень(3)*cos (3пи) + 1/корень(9)*cos(9пи)
нечетные косинусы равны минус единице, четные единице (чтобы понять начерти окружность с центром в начале координат, отметь на оси ОХ косинус. период 2пи. то есть справа будет стоять 0, 2п, 4п и тд, а слева, где пересечение оси с окружностью будет пи, 3пи и так далее..
Итак, как я уже сказал, четные косинусы =1, нечетные=-1 и получается следующее
1+1/корень(2)-1/корень(3)+1/корень(4)-1/корень(5)+1/корень(6)-1/корень(7)+1/корень(8)-1/корень(9)
Ну здесь можно по разному считать. можно посчитать отдельно рациональные, если раскроешь в них корень (-1+1/2-1/3), а потом иррациональные... в общем суть ясна. У меня на калькуляторе получилось примерно 0.1275. Как-то вот так)