1. Касательная параллельна графику y = -2x + 1, k = -2 ⇒ f'(x₀) = -2
f(x) = x³ + 3x² - 2x -2
f'(x) = 3x² + 6x - 2
f'(x₀) = 3x₀² + 6x₀ - 2 = -2
3x₀² + 6x₀ - 2 = -2
3x₀² + 6x₀ = 0
x₀(3x₀ + 6) = 0
x₀ = 0 или x₀ = -2
y₁кас = kx + b
y₁кас = -2x + b
f(0) = -2. Подставим точку (0; -2) в уравнение касательной:
-2 = -2*0 + b
b = -2
y₁кас = -2x - 2
y₂кас = kx + b
y₂кас = -2x + b
f(-2) = 6. Подставим точку (-2; 6) в уравнение касательной:
6 = -2*(-2) + b
b = 2
y₂кас = -2x + 2
2. f(х) = х² - 2x - 1
f'(x) = 2x - 2
f'(x₀) = 2x₀ - 2 = k
f(x₀) = х₀² - 2x₀ - 1
Подставим точку (x₀; х₀² - 2x₀ - 1) в уравнение касательной y = (2x₀ - 2)x + b:
х₀² - 2x₀ - 1 = (2x₀ - 2)x₀ + b
х₀² - 2x₀ - 1 = 2x₀² - 2x₀ + b
b = -x₀² - 1
yкас = (2x₀ - 2)x - x₀² - 1. Этому графику принадлежит точка A(0; -5). Подставим её координаты в уравнение касательной:
-5 = (2x₀ - 2)*0 - x₀² - 1
-5 = - x₀² - 1
x₀² = 4
x₀ = -2 или x₀ = 2
yкас = (2x₀ - 2)x - x₀² - 1
y₁кас = (2*(-2) - 2)x - (-2)² - 1
y₁кас = (2*(-2) - 2)x - (-2)² - 1
y₁кас = -6x - 5
y₂кас = (2*2 - 2)x - 2² - 1
y₂кас = 2x - 5
24 прибора в день.
Объяснение:
Пусть обычная производительность - это х приборов в день.
И за y дней они должны были сделать 216 приборов.
За первые 3 дня сделали 3x приборов.
Начиная с 4 дня начали делать по x+8 приборов в день.
И они за y-1 день сделали 216+16 = 232 прибора.
То есть они делали в течение y-3-1 = y-4 дней по x+8 приборов.
3x + (y-4)(x+8) = 232
3x + xy - 4x + 8y - 32 = 232
xy - x + 8y = 264
x(y - 1) = 264 - 8y
x = (264 - 8y) / (y - 1)
Это число должно быть целым. Подбором нетрудно получить
y = 9; x = (264 - 8*9) / 8 = (264 - 72) / 8 = 192/8 = 24
Например, равенство x + y - 1 = -1 - (- x - y) ; является тождествами относительно х и у, поскольку верно при любых значениях переменных х и у.
Равенство x + y - 1 = 2 - (- x - y) не является тождеством. Оно не верно ни при каких значениях переменных х и у.
Равенствоx + y - 1 = -1 + (- x - y) также не является тождеством. Оно верно лишь при некоторых значениях переменных, а именно при всех таких, что х+у=0 и не верно при любых других значениях х и у. Например, оно ложно при х=0, у=1.
Говорят также, что тождество есть равенство, верное при всех допустимых значениях переменных. Это «определение» менее удачно. Здесь требуется дополнительно объяснить, какие именно значения переменных является допустимыми. Рассмотрим, например, равенство sin 2pc = sin 22pу . Оно не является тождеством в смысле данного выше определения, поскольку оно ложно, например, при х=0,25 и у=0. Однако, если мы будем рассматривать это равенство при целочисленных значениях переменных х и у, то есть будем считать допустимыми только целые значения х и у, то указанное равенство будет верным. Можно сказать, что оно является тождеством, если допустимыми являются только целочисленные значения переменных х и у.
Если равенство верно при всех значениях переменных, которые принимают значения из данного множества А, то говорят, что данное равенство есть тождество на А.