все обыкновенные дроби можно представить в виде конечной десятичной дроби.Например, если делить 2 на 3, то сначала получим ноль целых, потом шесть десятых, а затем при делении всё время будет повторяться остаток 2, а в частном - цифра 6.Такое деление закончить без остатка невозможно и поэтому дробь 2/3 нельзя представить в виде конечной десятичной дроби.Если в записи десятичной дроби одна цифра или группа цифр начинают повторяться бесконечно много раз, такую дробь называют периодической дробью.В краткой записи периодической дроби повторяющуюся цифру (или группу цифр) пишут в скобках. Эту цифру (или группу цифр) называютпериодом дроби.Вместо 0,666... пишут 0,(6) и читают «ноль целых и шесть в периоде».Перевод периодической дроби в бесконечную десятичную дробь можно перевести в обыкновенную дробь.Рассмотрим периодическую дробь 10,0219(37).Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k = 2.Считаем количество цифр, стоящих после запятой, но до периодадесятичной дроби. Обозначаем количество цифр за букву m. У нас m = 4.Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Если вначале, до первой значащей цифры, идут нули, то отбрасываем их. Обозначаем полученное число буквойa. a = 021937 = 21 937
Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Если вначале до первой значащей цифры идут нули, то отбрасываем их. Обозначаем полученное число буквой b. b = 0219 = 219
Подставляем найденные значения в формулу, где Y - целая частьбесконечной периодической дроби. У нас Y = 10.Пример перевода периодической дроби в обыкновеннуюИтак, подставляем все найденные значения в формулу выше и получаем обыкновенную дробь. Полученный ответ всегда можно проверить на обычном калькуляторе.
Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
Пусть х км/час - скорость мотоциклиста, у км/час -скорость велосипедиста. До встречи мотоциклист проехал 28х км, а велосипедист 28у км. После встречи оставшийся путь мотоциклист проехал за 28у/х минут, а велосипедист за 28х/у. Зная, что мотоциклист был в пути на 42 мин меньше составим уравнение: 28х/у-28у/х=42 Обозначим дробь х/у новой переменной: х/у=z Тогда уравнение примет вид: 28z-28/z=42 Приводим к общему знаменателю: 28z^2+42z-28=0 Решая квадратное уравнение получим корни: z1=-2 не подходит; z2=1/2. СЛедовательно, х/у=1/2. т.Е. скорость велосипедиста в 2 раза меньше скорости мотоциклиста. Отсюда имеем время движения велосипедиста из В в А равно 28+56=84минуты. ответ: 84
a = 021937 = 21 937
Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Если вначале до первой значащей цифры идут нули, то отбрасываем их. Обозначаем полученное число буквой b.
b = 0219 = 219
Подставляем найденные значения в формулу, где Y - целая частьбесконечной периодической дроби. У нас Y = 10.Пример перевода периодической дроби в обыкновеннуюИтак, подставляем все найденные значения в формулу выше и получаем обыкновенную дробь. Полученный ответ всегда можно проверить на обычном калькуляторе.