Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
В нашей группе 3 взрослых (два родителя и учитель), значит, им на билеты нужно потратить: 200*3=600 (руб). Еще мы знаем, что для группы школьников из 10 человек мы можем купить билет за 800 р. У нас школьников 16, значит, 10 поедут по билету за 800 руб. Затем, найдем тех, кому за билеты придется платить отдельно. 16-10=6 (уч.)-те, кому придется брать отдельный школьный билет => 6*100=600 (руб). Сложим те стоимости, что у нас получились: 600+800+600=2000 (руб) Если бы нам была нужна максимальная сумма, то мы бы всем ученикам из 16 купили билеты по 100 руб. ответ: минимальная сумма в рублях, которую должна заплатить группа, равна 2000 руб.