Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
Обозначим углы треугольника следующим образом: а - наименьший, b - средний по величине, c - наибольший. Находим сумму наименьшего с наибольшим: а+с Так как сумма углов треугольника равна 180°, то b=180°-(a+c) Анализируем предложенные ответы: А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол" Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол" В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол. Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат. ответ: 91°