Так как выражение (7а-3)² нечетное Значит выражение (7а-3) должно заканчиваться цифрами 1, 3, 5, 7, 9. Поэтому 7а должно соответственно заканчиваться 4, 6, 8, 0, 2. А само а заканчивается цифрой 2, 8, 4, 0, 6.
Теперь перебираем все пять вариантов окончания а: а) При а=...2 Получаем а²-1=...3 -нечетное не имеет смысл проверять далее в) При а=...2 Получаем а²+а+1=...7 -нечетное с) При а=...2 Получаем 5а+2=..2 -четное при а=...8 Получаем 5а+2=..2 -четное при а=...4 Получаем 5а+2=..2 -четное при а=...0 Получаем 5а+2=..2 -четное при а=...6 Получаем 5а+2=..2 -четное d) При а=...2 Получаем а³+1=...9 -нечетное е) При а=...2 Получаем 4а-3=...5 -нечетное
Решение задачи может быть произведено несколькими Первый классический. Выделим полный квадрат в этом выражении и посмотрим, к чему дело придёт. Надеюсь, с техникой выделения полного квадрата все знакомы, поэтому не комментирую этот шаг. x^2 - 6x + 10 = (x^2 - 2 * 3x + 9) - 9 + 10 = (x-3)^2 + 1 - раскройте скобки, проверьте, что я ничего не изменил. В силу того, что (x-3)^2 >= 0, имеем, что (x-3)^2 + 1 >= 1, то есть все значения этого выражения не меньше 1. Откуда и следует доказываемое равенство.
Либо же можно было просто заметить, что дискриминант трёхчлена x^2 - 6x + 10 отрицательный. Геометрически это означает, что на координатной плоскости парабола эта лежит целиком над осью OX. В силу того, что и ветви этой параболы направлены вверх, видим, что все значения этой параболы будут положительными, что и требовалось доказать. Это второй решения.