М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
макар95
макар95
30.07.2022 05:30 •  Алгебра

А+4 4а умножить 8а во второй степени а во второй -16.

👇
Ответ:
DanilFox02
DanilFox02
30.07.2022

\frac{a+4}{4a} * \frac{8a^2}{a^2-16}=\frac{a+4}{4a} * \frac{8a^2}{(a-4)(a+4)}=\frac{2a}{a-4}

4,7(83 оценок)
Открыть все ответы
Ответ:
morshchininao
morshchininao
30.07.2022

Пусть y = uv, тогда y' = u'v + uv':

Решим левый интеграл:

cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdx%7D%7Bcosx%7D%3B%5C%5C%20tg%5Cfrac%7Bx%7D%7B2%7D%3Dt%20%3D%3E%20cosx%20%3D%20%5Cfrac%7B1-t%5E2%7D%7B1%2Bt%5E2%7D%20%3D%3E%20dx%20%3D%20%5Cfrac%7B2%7D%7B1%2Bt%5E2%7Ddt%5C%5C%20%20%5Cint%20%5Cfrac%7B2%281%2Bt%5E2%29%7D%7B%281%2Bt%5E2%29%281-t%5E2%29%7D%20dt%20%3D%20%5Cint%20%5Cfrac%7B2%7D%7B%281-t%29%281%2Bt%29%7Ddt%20%3D%20%5Cint%20%28%20%5Cfrac%7B1%7D%7B1-t%7D%20%2B%20%5Cfrac%7B1%7D%7B1%2Bt%7D%29dt%20%3D%20ln%281-t%29%2Bln%28%201%2Bt%29%20%3D%20ln%7C1-t%5E2%7C%20%3D%20ln%7C1-tg%5E2%5Cfrac%7Bx%7D%7B2%7D%7C%20%20%5C%5C" title="\int \frac{dx}{cosx};\\ tg\frac{x}{2}=t => cosx = \frac{1-t^2}{1+t^2} => dx = \frac{2}{1+t^2}dt\\ \int \frac{2(1+t^2)}{(1+t^2)(1-t^2)} dt = \int \frac{2}{(1-t)(1+t)}dt = \int ( \frac{1}{1-t} + \frac{1}{1+t})dt = ln(1-t)+ln( 1+t) = ln|1-t^2| = ln|1-tg^2\frac{x}{2}| \\">

Возвращаемся к исходному:

4,5(56 оценок)
Ответ:

Здравствуйте, Sonya2006f!

Чтобы восстановить неполный квадрат суммы, нужно представить крайние члены данной формулы в виде числа со степенью.

Разложение чисел на простые множители:

\rightarrow\bf 4x^2=2\cdot2\cdot x\cdot x=2^2x^2=\Big(2x\Big)^2\\\\ \rightarrow \bf 9=3\cdot 3=3^2

Теперь когда мы знаем, как представить данные члены в виде числа со степенью, запишем формулу, по которой выполнялось разложение.

Формула сокращённого умножения:

НЕПОЛНЫЙ КВАДРАТ СУММЫ:  \bf \Big(a+b\Big)^2=a^2+ab+b^2.

Зная, что первоначально выражение имело вид   \bf \Big(2x+3\Big)^2 , перемножим по формуле эти члены между собой и получим ответ на Ваш вопрос.

Разложение данного выражения на множители:

\tt \Big(2x+3\Big)^2=\Big(2x\Big)^2+\bf2x\cdot 3\tt+3^2=4x^2+\bf6x\tt+9

Окончательный ответ данной задачи:

Неполный квадрат суммы данного выражения - "6x".

С Уважением, NeNs07.

4,4(96 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ