Объяснение:
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
3)(-1,21)²⁴: (-1,21)²³=(-1,21)²⁴⁻²³=(-1,21)¹= -1,21
4)(pg)¹⁸: (pg)⁸: (pg)³=(pg)⁷
а)(pg)¹⁸: (pg)⁸=(pg)¹⁸⁻⁸= (pg)¹⁰
б)(pg)¹⁰: (pg)³=(pg)¹⁰⁻³= (pg)⁷
а) х∈(-∞;-3)∪(-3;3)∪(3;+∞)
bв) р∈(-∞;-4)∪(-4;4)∪(4;+∞)
с) s∈(-∞;-2)∪(-2;2)∪(2;+∞)
d) t∈R
e) c∈(-∞;-2)∪(-2;2)∪(2;+∞)
f) а∈(-∞;-15)∪(-15;3)∪(3;+∞)
У последних двух надо решить уравнения, узнать, какие числа обращают в нуль знаменатель и выбросить из допустимых значений. т.к. делить на нуль нельзя.
4) c∈(-∞;-2)∪(-2;2)∪(2;+∞); I2cI=4⇒с=±2, значит,
c∈(-∞;-2)∪(-2;2)∪(2;+∞)
3-Iа/3+2I=0; Iа/3+2I=3; а/3+2=±2; откуда а =-15, а =3, и ответ
а∈(-∞;-15)∪(-15;3)∪(3;+∞), откуда выброшены точки -15 и 3.
остальные решаются устно. т.е. выбрасываются значения, которые обращают в нуль знаменатель.
d) t∈R, т.к. ни при каких t (t ²+36) в нуль не обратишь, это сумма неотрицательного t ² и положительного числа 36, и эта сумма положительна, т.е. допускает любое значение переменной t
Б ) 6.4