Переформулируем под вид a(x-x1)(x-x2)..., имея уже корни
1*(x-(-7))(x-1) ≤ 0
Там надо нарисовать прямую и отметить на ней точки -7 и 1. И подставлять под х в уравнении наверху сначало число больше 1, потом больше -7 и меньше 1 (0, например), а в конце меньше -7. Затем над отрывками, откуда брались числа, пишешь +, если результат слева положительный, и -, если наоборот.
Могу показать на фото. Я сделала, у меня получился ответ: x принадлежит [-7; 1]
А) 2ax-(a+b)=4x+(3a-b-8) 2ax-a-b=4x+3a-b-8 2ax-a-b-4x-3a+b+8=0, приводим подобные, причем b - сокращается. 2ax-4a-4x+8=0, сократим на 2 ax-2x-2a+4=0 ax-2x=2a-4 (а-2)х=2(а-2) Делаем вывод: что бы данное выражение не зависело от переменной Х и одна часть равнялось другой, нужно что бы множителем при Х был ноль, тогда и справа будет ноль. Отсюда а-2=0, а=2. Т.к. b - сократилось, то оно может быть любым числом.
б)2x²+x-(a+b)x+2b-a = -ax+2(x²-b)+(1-b)(x²+2x) 2x²+x-aх-bx+2b-a = -ax+2x²-2b+x²+2x-bx²-2bx, переносим влево 2x²+x-aх-bx+2b-a + ax-2x²+2b-x²-2x+bx²+2bx = 0, приводим подобные -x²+bx²-х+bx+4b-a=0 x²(b-1)+х(b-1)+4b-a=0, рассуждаем как в предыдущем примере, что бы избавиться от переменной Х принимаем b-1=0 ⇒ b=1, подставляем и получаем: 4-a=0 ⇒ а=4, значит а=4, b=1.
Сначала приравняем к 0
z² + 6z - 7 = 0
D = (6)² - 4 * 1 * (-7) = 36 + 28 = 64
По теореме Виета:
z1 + z2 = -6
z1 * z2 = -7
z1 = -7
z2 = 1
Переформулируем под вид a(x-x1)(x-x2)..., имея уже корни
1*(x-(-7))(x-1) ≤ 0
Там надо нарисовать прямую и отметить на ней точки -7 и 1. И подставлять под х в уравнении наверху сначало число больше 1, потом больше -7 и меньше 1 (0, например), а в конце меньше -7. Затем над отрывками, откуда брались числа, пишешь +, если результат слева положительный, и -, если наоборот.
Могу показать на фото. Я сделала, у меня получился ответ: x принадлежит [-7; 1]
Объяснение: