Наибольшая прибыль = 7 денежных единиц
Объяснение:
Пусть x - количество произведенной продукции П1, а y - количество произведенной продукции П2. Тогда цель задачи максимизировать значение () при условии ограничений на сырье и того, что нам надо произвести хоть что-то:
Эти четыре неравенства задают заштрихованный под прямыми четырехугольник в первом квадранте.
Значение максимизируемого выражения x+2y есть линии уровня z=x+2y, а так как градиент функции z(x,y) равный grad z = {1;2} направлен в сторону первого квадранта, то значения z будут тем больше, чем дальше мы продвинем линию уровня в первый квадрант. С учетом ограничений наибольшее значение изготовленной продукции придется на пересечение прямых, которые задают четырехугольник: . Точка пересечения (3;2). Значит, наибольшая прибыль, которую можно получить 3+2*2=7.
III. Формулювання мети і завдань уроку
Формулюємо проблему: як знайти значення виразу
.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0
та знайдіть суму і добуток його коренів.
2. Наведіть приклад квадратного рівняння, в якого:
а) один корінь дорівнює нулю, а другий — не дорівнює нулю;
б) обидва корені дорівнюють нулю;
в) немає дійсних коренів;
г) корені — протилежні ірраціональні числа.
3. Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює
1/3 - 3/6 + 4 + х/2 = 0
(2-3)/6 + 4 + х/2 = 0
(-1 + 24)/6 + х/2 = 0
23/6 + х/2 = 0
(23+3х) /6 = 0
23 + 3х = 0
3х = -23
х = -23/3
х = - 7 (целых) 2/3