Уравнение касательной для функции f(x) = e^x в точке x = x0 имеет вид y = (e^x0) * x + b { Общее уравнение касательной для функции f(x): y = mx+b, где m - slope factor,m = d/dx*f(x), в нашем случае m=d/dx*f(x) = (e^x)' = e^x } если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1 т.к. формула касательной для нашей функции y = (e^x0) * x + b, то e^x0 = 1, b = 1, откуда x0 = 0, в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)), действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1, совпадают, f(0) = y(0) = 1 таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈) Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает. => Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}
3+3^(-2x)-43^(-x)=0 умножим на 3∧(2х)
3*(3∧2х) - 4*3∧х + 1 = 0
D = 16 - 4*3*1 = 4
3∧x = (4 - 2) /6 = 1/3; 3∧x = 3∧(-1)
x = -1
3∧x = (4 + 2) /6 = 1
3∧x = 3∧(0)
x = 0