М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aruka10511
aruka10511
27.01.2021 22:25 •  Алгебра

Решите относительно относительно переменной x a) cos 3*cos 5* (x^2-4)< 0 b) cos 2 *(2x-1)< 0

👇
Ответ:
Ruki2233
Ruki2233
27.01.2021
A) cos 3*cos 5* (x²-4)<0
   cos3<0, cos5>0 => cos3*cos5<0=>x²-4>0
                                                       (x-2)(x+2)>0
                           +                     -                    +
          -22
      
             x∈(-∞;-2)∨(2;+∞)

b) cos 2 *(2x-1)<0
   cos2<0 => 2x-1>0
                    2x>1
                    x>1/2
             x∈(1/2;+∞)
4,5(49 оценок)
Открыть все ответы
Ответ:
Julia13662004
Julia13662004
27.01.2021
1) 1) найдите значение производной функции  y=cosx-2sinx в точке Xo =3π/2. 
 y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) =  - sin(3π/2) -2cos(3π/2)  = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3 
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5  =  3(x +5/3)(x -1) .
y '      +                                     -                         +   
- 5/3 max  1  min

3 )Решите уравнение  -2sin²x-cosx+1=0
 Укажите корни, принадлежащие отрезку          П    ?            

-2sin²x-cosx+1=0 ;  x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
 
производим замену переменной  t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.

[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k  , k∈Z .

ответ :   2π/3 .
4,8(70 оценок)
Ответ:
teymurvalikhan1
teymurvalikhan1
27.01.2021
1) 1) найдите значение производной функции  y=cosx-2sinx в точке Xo =3π/2. 
 y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) =  - sin(3π/2) -2cos(3π/2)  = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3 
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5  =  3(x +5/3)(x -1) .
y '      +                                     -                         +   
- 5/3 max  1  min

3 )Решите уравнение  -2sin²x-cosx+1=0
 Укажите корни, принадлежащие отрезку          П    ?            

-2sin²x-cosx+1=0 ;  x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
 
производим замену переменной  t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.

[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k  , k∈Z .

ответ :   2π/3 .
4,8(80 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ