32 см
Объяснение:
Пусть х см - ширина прямоугольника, тогда
(х+4) см - длина прямоугольника
(х(х+4)) кв.см -площадь прямоугольника
Т.к. по условиям задачи площадь равна 60 кв.см , составим и решим уравнение.
х(х+4)=60
х^2+4х=60
х^2+4х-60=0
а=1 b=4 c=-60
D=b^2-4ac=4^2-4*1*(-60)=16+240=256
x=(-b+корень D)/2а=(-4+корень 256)/2*1=(-4+16)/2=12/2=6
x=(-b-корень D)/2а=(-4-корень 256)/2*1=(-4-16)/2=-20/2=-10
-10 - значения стороны не может быть отрицательным
6 см-ширина прямоугольника
1) Находим периметр периметр по формуле 2*(a+b)=2*(6+(6+4))=32 см
n^2 - это число во второй степени
Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
Пусть Х это скорость второго пешехода, тогда Х+2 - первого.
2(Х+2)=3Х
2Х+4=3Х
Х=4
3*4=12.
ответ: 12 км