Объяснение:
1) Упростить
а)(х-3)(х-7)-2х(3х-5)=
=х²-7х-3х+21-6х²+10х=
= -5х²-10х+21+10х=
= -5х²+21
б)4а(а-2)-(а-4)²=
=4а(а-2)-(а²-8а+16)=
=4а²-8а-а²+8а-16=
=3а²-16
в)2(t+1)²-4t=2[(t+1)²-2t]=
=2(t²+2t+1-2t)=2(t²+1)
2)Разложить на множители
а)х³-9=х(х²-9)=х(х-3)(х+3)
б)-5a²-10ab-5b²= -5(a²+2ab+b²)=
= -5(a+b)²= -5(a+b)(a+b)
3)Упростить
(у²-2у)²-у²(у+3)(у-3)+2у(2у²+5)=
=у⁴-4у³+4у²-у²(у²-9)+4у³+10у=
=у⁴-4у³+4у²-у⁴+9у²+4у³+10у=
=13у²+10у=у(13у+10)
4)Разложить на множители
а)16х⁴-81=(4х²-9)(4х²+9)
б)х²-х-у²-у=(х²-у²)-(х+у)=
=[(x-y)(x+y)-(x+y)]=
=(х+у)(х-у-1)
в)64а⁸-1=(8а⁴-1)(8а⁴+1)
5)Уравнение
а)5х³-45х=0
5х(х²-9)=0
5х=0
х₁=0
х²-9=0
х²=9
х₂,₃=±√9
х₂=3
х₃= -3
б)16х³-8х²+х=0
х(16х²-8х+1)=0
х₁=0
16х²-8х+1=0
х₂,₃=(8±√64-64)/32
х₂,₃=(8±√0)/32
х₂,₃=(8±0)/32
х₂= 8/32=1/4
(перед тем, как я отвечу хочу попросить вас подписаться, так я смогу отвечать на ваши вопросы всегда и , оцените это решение! )
«теоремы виета»
примеры:
x2 + 7x + 12 = 0 — это квадратное уравнение;
x2 − 5x + 6 = 0 — тоже ;
2x2 − 6x + 8 = 0 — а вот это нифига не , поскольку коэффициент при x2 равен 2.
~разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать — достаточно разделить все коэффициенты на число a. мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.
разделим каждое уравнение на коэффициент при переменной x2. получим:
3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
−4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. при этом возникли дробные коэффициенты.
надеюсь, я вам !
P=2(a+b)
1)a) p=a+b
2)Полупериметр минус известная сторона(a=p-b; b=p-a )
3)вычесть из периметра удвоенную известную сторону, получившийся ответ разделить на два. например периметр 20, известная сторона 6. неизвестная сторона равна (20 - (6 * 2)) / 2 = 4(a=P/2-b; b=P/2-a )
4)периметр равен а * 4(P=4a)