Пусть АО - высота башни.
АК - наклонная под углом 60°.
расстояние от точки К до основания башни - КО
расстояние от точки К до вершины башки - наклонная АК.
Дано:
АО = 35√3 м
∠АКО = 60°
Найти: проекцию КО и наклонную АК.
Рассмотрим ΔАОК - прямоугольный.
sin 60° = 35√3/АК
√3/2 = 35√3/АК
АК = (2*35√3) / √3 = 70 (м) - расстояние от К до самой высокой точки башни.
КО² = 70² - (35√3)² = 4900 - 3675 = 1225
КО = √1225 = 35 (м) - расстояние от точки К до основания башни
ответ: расстояние от точки К до основания башни 35 м, а
расстояние от точки К до самой высокой точки башни 70 м.
1. 3√5 ∙√20=3√100=30
2. √32 – √18 –√2= √4√2-3√2-√2=0
3. 4х²– 9х = 0. х*(4х-9)=0⇒х=0; х=9/4=2.25, ответ 0;2.25
4. 25-24=1
5. (х²- 9)/(3х²- 9х)=(х-3)(х+3)/(3х*(х-3))=(х+3)/3х
(3+3)/(3*3)=6/(3*3)=2/3
6. По теореме Виета это свободный член и он равен -7
7. х²- х -2 = 0. По Виету х=2; х=-1
8. (х²- 3х+2)/(х²+ х-2) = 0, разложим дроби на множители. решив уравнения х²- 3х+2=0,х²+ х-2=0, для числителя по Виету х=1, х=2, по Виету для знаменателя х=-2, х=1
(х-1)(х-2)/((х+2)(х-1))=(х-2)/(х+2)=0, ⇒х=2, убеждаемся проверкой, что данный корень является корнем исходного уравнения.
ответ х=2