Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
Последнее произведение будет оканчиваться на 5 при n = *3 и n = *5, где * - 0 или любое натуральное число.
Примеры:
n = 3: 3*(2+3) = 3*5 = 15
n = 5: 5*(2+5) = 5*7 = 35
n = 13: 13*(2+13) = 13*15 = 195
n = 15: 15*(2+15) = 15*17 = 255
и т.д.