y = -6·x
Объяснение:
Пусть линейные функции, то есть прямые заданы уравнениями y₁=k₁·x+b₁ и y₂=k₂·x+b₂. Прямые параллельны тогда и только тогда, когда k₁=k₂ и b₁≠b₂. Если k₁=k₂ и b₁=b₂, то прямые совпадают.
В силу этого, уравнение прямой, параллельной графику функции y=-6·x+10 имеет вид: y=-6·x+b. Так как прямая проходит через начало координат О(0; 0), то подставляя эти значения определяем b:
0=-6·0+b или b=0.
Тогда уравнение прямой, параллельной графику функции y=-6x+10 и проходящей через начало координат имеет вид: y=-6·x.
График на фотографии.
А) Найдем наибольшее и наименьшее значение функции на отрезке [-4;6]. Так как графиком функции является прямая, которая убывает на R, то для нахождения наибольшего и наименьшего значений достаточно подставить в функцию крайние точки промежутка.
у(-4) = (-1/2)*(-4) + 1 = 3
у(6) = (-1/2)*6 + 1 = -2
Значит, у наиб = 3, у наим = -2.
Б) -1/2x + 1 > 0
-1/2x > -1
х < 2.
у > 0 на промежутке (- бексконечность; 2)
ИЛИ
по графику видно, что у > 0 на промежутке (- бексконечность; 2)