1) 3x-50
2) 2x^2-2x
Объяснение:
1) 5(x-8)-2(5+x)=5x-40-10-2x=3x-50
1. Здесь умножаем число на каждый одночлен в скобках
2. Получаем:
1) 5*x=5x
2) 5*(-8)=-40
3) (-2)*5=-10
4) (-2)*x=-2x
3. Складываем получившиеся одночлены: 5x+(-40)+(-10)+(-2x)=5x-40-10-2x
4. Приводим подобные слагаемые и получаем ответ: 5x-40-10-2x=5x-2x+(-40-10)=3x-50
2) x(x^2+x-2)-x^2(x-1)=x^3+x^2-2x-x^3+x^2=2x^2-2x
См. алгоритм 1
1) x*x^2=x^3 (степени складываются)
2) x*x=x^2 (см. 1)
3) x*(-2)=-2x
4) -x^2*x=-x^3
5) -x^2*(-1)=x^2
x^3-x^3+x^2+x^2-2x=2x^2-2x
Среднее арифметическое чисел - это частное от деления суммы чисел на число слагаемых.
Размах ряда чисел – это разница между наибольшим числом и наименьшими элементами множества.
Мода - наиболее часто встречающиеся или повторяющиеся элемент множества. Если множество не содержит повторяющихся элементов, то мода равна 0.
Если множество содержит нечетное количество чисел, то медиана — это число, которое является серединой множества чисел. Если множество содержит четное количество чисел, то медиана - это среднее арифметическое для двух чисел, находящихся в середине множества.
а) 58, 60, 49, 35, 51, 42, 65, 40.
Среднее арифметическое:
(58+60+49+35+51+42+65+40)/8=400/8=50
Сортируем по возрастанию: 35, 40, 41, 42, 49, 51, 58, 60.
Размах:
60-35=25
Мода: 0, так как нет повторяющихся чисел.
Количество чисел чётное, то медиана
(42+49)/2=91/2=45,5
б) 21, 25, 19, 13, 25, 29, 21, 27, 30.
Среднее арифметическое:
(21+25+19+13+25+29+21+27+30)/9=210/9=70/3=23 1/3
Сортируем по возрастанию: 13, 19, 21, 21, 25, 25, 27, 29, 30
Размах:
30-13=17
Мода: получается 2 моды 21 и 25.
Количество чисел нечётное, то медиана
*25*