Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов, тогда второй рабочий на производство 150 деталей затрачивает 150/х часов Составим уравнение: 150/х-112/(х+3)=2 150/х-112/(х+3)-2=0 Общий знаменатель х(х+3), тогда (150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение: 150х+450 -112х-2х²-6х=0 32х-2х²+450=0 (умножим на -1) 2х²-32х-450=0 (сократим на 2) х²-16х-225=0 Найдем дискриминант: D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156 х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25 х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит ответ: Второй рабочий в час изготовляет 25 деталей.
(x-x₀)²+(y-y₀)²=R² - уравнение окружности в общем виде (x₀;y₀) - координаты центра окружности R - радиус окружности По условию задачи, центр окружности лежит на биссектрисе первой координатной четверти, следовательно, x₀>0, y₀>0 и x₀=y₀ Тогда, подставив координаты точки, через которую проходит окружность, значение для радиуса окружности, а также, учитывая, что х₀=у₀, получим следующее уравнение: (1-x₀)²+(8-x₀)²=5² 1-2x₀+x₀²+64-16x₀+x₀²=25 2x₀²-18x₀+40=0 |:2 x₀²-9x₀+20=0 Применим теорему Виета: {x₀₁*x₀₂=20 {x₀₁+x₀₂=9 => x₀₁=4; x₀₂=5 х₀=у₀ => y₀₁=4; y₀₂=5 (4;4), (5;5) - центры искомых окружностей
Подставляем найденные координаты в общее уравнение окружности:
(х-4)²+(у-4)²=25 и (х-5)²+(у-5)²=25 - искомые уравнения окружностей
23-2=21
23+2=25
21 23 25
Наверно так