КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное) Применим метод Эйлера Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение Корни которого Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное) отсюда где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде: уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
Если дискриминант отрицательный ---> корней НЕТ))) а корни --- это точки, лежащие на оси ОХ --- точки пересечения графика этой функции с осью ОХ (а график здесь --- парабола))) и что значит, что корней НЕТ?? --- значит, график эту ось НЕ пересекает... т.е. парабола либо ВСЯ выше оси ОХ, либо вся ниже оси ОХ... осталось рассмотреть направление ветвей параболы... старший коэффициент > 0 (3 > 0) ---> ветви ВВЕРХ, т.е. ВСЯ парабола выше оси ОХ (иначе парабола пересечет ось ОХ))) а вопрос (знак неравенства): когда парабола НИЖЕ оси ОХ ответ: никогда (пустое множество решений)
-3sint=-3
sint=1
t=π/2+2πn,n∈Z