 
                                                ![\int \frac{cos^2xdx}{sin^4x}=\int \frac{cos^2x}{sin^2x}\cdot \frac{dx}{sin^2x}=\int ctg^2x\cdot \frac{dx}{sin^2x}=[t=ctgx,\; dt=-\frac{dx}{sin^2x}]=\\\\=-\int t^2\cdot dt=-\frac{t^3}{3}+C=-\frac{ctg^3x}{3}+C\\\\\\\int \frac{dx}{cos^4x\cdot sin^2x}=\int \frac{\frac{dx}{cos^6x}}{\frac{cos^4xsin^2x}{cos^6x}}=\int \frac{(\frac{1}{cos^2x})^2\cdot \frac{dx}{cos^2x}}{tg^2x}=\\\\=[t=tgx,dt=\frac{dx}{cos^2x},1+tg^2x=\frac{1}{cos^2x}]=\int \frac{(1+t^2)^2dt}{t^2}=\int \frac{1+2t^2+t^4}{t^2}dt=](/tpl/images/0322/2276/4cbe9.png)
 
                                                 
                                                Объяснение:
Решая 6- задания, Юрий ежеминутно зарабатывает:
: 6 минут =
При решении 8- заданий, Юрий ежеминутно зарабатывает:
: 9 минут = 8/
а при решении 10- задач:
: 15 минут = 10/15 = 2/
Таким образом, в течение 45 минут максимальное количество может быть получено при решении максимально возможного количества 6- заданий, а в оставшееся время - 8- заданий.
Пусть х - количество 6- заданий, у - количество 8- заданий, тогда лимит времени, которым располагает Юрий, равен:
6·х + 9·у = 45 минут
Так как 6х не кратно 45, то принимаем у = 1 (минимальное значение 8- заданий), тогда х = (45 - 9) : 6 = 36 : 6 = 6 заданий.
Следовательно, наибольшее количество , которое может набрать Юрий за первые 45 минут работы, равно:
6 · 6 + 8 · 1 = 36 + 8 =
ответ:
 
                                                 от того, что осталось после первого деня, то после второго дня работы осталась
 от того, что осталось после первого деня, то после второго дня работы осталась  от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно
 от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно  =2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12.
=2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12. 
                                                 
                                                 
                                                 
                                                