4 км/час
Объяснение:
Пусть скорость лодки от пристани до острова равна х км/час. Тогда
S = 24км = х*t → t = 24 / х
На обратном пути скорость стала: (х + 1) км/час, а время, за которое она обратный путь : (t - 2) часа. Тогда
S = 24 км = (х +1) (t-2) или, подставив выражение для t из первого равенства, получим:
24 = (х+1) * [(24/х) - 2]
(x + 1)(24 -2x)/x = 24
2 (х + 1)(12 - х) =24х
(х + 1)(12 - х) = 12х
12х + 12- х² -х = 12х
х² + х - 12 = 0
х² + 4х - 3х - 12 = 0
Х(х + 4) - 3(х + 4) = 0
(х + 4)(х - 3) =0
х ₁ = - 4 - не удовлетворяет условию
х ₂ = 3 (км/час) - скорость лодки от пристани до озера
3 + 1 = 4 (км/час) - скорость лодки от острова до пристани
ответ: Лодка плыла от острова до пристани со скоростью 4 км/ч.
* * * * * * * * * * * * * * * * * * * * * *
Числа x, y, z образуют (в указанном порядке) геометрическую прогрессию; числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию, а числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию. Найдите x, y и z.
ответ: 5 ; 15 и 45 или 5/9 ; -25/9 и 125/9 .
Объяснение: * * * x ; x*q ,x*q² , x≠0 * * *
y =x*q ; z =x*q², где q знаменатель геометрической прогрессии
числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию , значит y+10 =(x+z)/2⇔ 2(y+10) =x+z ⇔(символ эквив)
2(x*q+10) = x+x*q²⇔ x+x*q²- 2x*q=20⇔ x*(q-1)² =20 (1)
числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию,следовательно (y+10)² = x(z+80) ⇔(x*q+10)² = x(xq²+80) ⇔
x²*q²+20x*q+100 = x²q²+80x ⇔20x*q+100 =80x⇔x*q+5 =4x ⇔
x*(4-q) = 5 (2)
первое уравнение (1) разделим на уравнение (2) получаем
x*(q-1)²/ x*(4-q) =20/5 ⇔(q-1)²/ (4-q) =4 ⇔ q²-2q+1 =16 -4q
q²+2q- 1 5 =0 ⇒ q =3 ; q = - 5
a) q = 3 ⇒ x = 5/(4-q) = 5/(4-3) = 5 5 ; 15 ; 45
b) q = - 5 ⇒ x = 5/(4-q) = 5/ (4-(5)) =5/9 5/9 ; -25/9 ; 125/9
1 сек = 1/60 мин = 1/3600 ч
0,0007:1/3600=0, 0007·3600=2,52 км/ч