Одночленом называют алгебраическое выражение, которое представляет собой произведение чисел и переменных, возведённых в степень с натуральными показателями.
а) a + b² не является одночленом, так как в этих алгебраических выражениях нет произведения чисел и переменных, возведённых в степень с натуральными показателями.
б) - одночлен
в) - не одночлен, объяснение такое же как в примере а)
г) -8 является одночленом, ведь одночленами являются также все числа, любые переменные и степени переменных.
Общий ход построения данных графиков: График - прямая, для построения требуется две точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу (для каждого графика свою, приведена ниже): Х= У= Отмечаем точки в системе координат, проводим через них прямую. Подписываем график. Всё! Итак, начнём:
у=-4х - прямая, проходящая через начало координат , поэтому достаточно ещё одной точки, например х=1, у= -4 , ставим точку (1;-4) и проводим прямую через эту точку и начало координат.
Одночленом называют алгебраическое выражение, которое представляет собой произведение чисел и переменных, возведённых в степень с натуральными показателями.
а) a + b² не является одночленом, так как в этих алгебраических выражениях нет произведения чисел и переменных, возведённых в степень с натуральными показателями.
б) - одночлен
в) - не одночлен, объяснение такое же как в примере а)
г) -8 является одночленом, ведь одночленами являются также все числа, любые переменные и степени переменных.
д) а - одночлен
е) 0 одночлен
ответ: а) Нет; б) Да; в) Нет; г) Да; д) Да; е) Да.