1)
33*2^x-1 - 4^x+1 =2. Пусть 2^x =t, тогда 4^x = t^2. Перепишем наше уравнение в виде:
33t/2 - 4t^2=2.
8t^2-33t+4 =0. Считаем Дискриминант.Он равен 961
Тогда t1 = 33+31/8 = 8 t2 = 33-31/8 =1/4.
Учитывая замену 2^x = 8; x =3 и 2^x = 1/4 ; x=-2
ответ: 3 -2
2) x + 12√x -64 =0. Замена √x = t
t^2+12t-64=0. Дискриминант равен 400
t1 = -12 +20 /2 = 4 t2= -12-20/2 = -16.
Учитывая замену
√x = 4 x = 16 √x= -16 (нет корней)
ответ: 16
3) Составим уравнение 5(x+2.4) = 6.25(x-2.4)
5x+12 = 6.25x - 15.
1.25x = 27
x =21.6
ответ: 21,6 км/ч
Находим первую производную: .
f'(x) = 9x2+6x
или
f'(x) = 3x(3x+2)
Находим нули функции. Для этого приравниваем производную к нулю
3x(3x+2) = 0
Откуда:
x1 = -2/3
x2 = 0
(-∞ ;-2/3)(-2/3; 0)(0; +∞) f'(x) > 0 f'(x) < 0f'(x) > 0 функция возрастает
функция убывает функция возрастает
В окрестности точки x = -2/3 производная функции меняет знак с (+) на (-). Следовательно, точка x = -2/3 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.