D (-∞;+∞)
y(-x)= (-x)^4-2(-x)^2-3 - четная
OX: y=0
x^4 - 2x^2 -3=0
x^2(x^2-2)=3
x^2=3 или x^2-2=3
x=sqrt(3) x=sqrt(5)
OY: x=0 y=-3
Находим критические точки.
y'(x)= 4x^3-4x
4x^3-4x=0
4x(x^2-1)=0
x=0 x=±1
Далее стоим числовую прямую и наносим на нее -1:0:1
Находим промежутки возростания и убывания функции.
Находим Xmin и Xmax, подставляем в функцию и находим Ymax, Ymin.
Далее стоим график. Наносим точки пересечения с осями и критические точки.
y - скорость течения реки или скорость плота
x+y - скорость катера по течению
x-y - скорость катера против течения
90/(x+y) - время катера на путь по течению
90/(x-y) - время катера на путь против течения
30/y - время плота до встречи
90/(x+y)+60/(x-y) - время катера до встречи
Имеем систему
90/(x+y)+90/(x-y)=12,5
90/(x+y)+60/(x-y)=30/y
или первое уравнение оставляем и приводим к общему знаменателю, а второе уравнение получаем вычитанием второго из первого.
Новая система:
90(x-y+x+y)=12,5(x-y)(x+y)
30/(x-y)=12,5-30/y или 30/(x-y)+30/y=12,5; 30(y+x-y)=12,5y(x-y)
180x=12,5(x-y)(x+y)
30x=12,5y(x-y)
Делим первое уравнение на 2-ое: 6=(x+y)/y⇒6y=x+y⇒x=5y
подставляем во 2-е уравнение вместо x его значение 5y:
30*5y=12,5y(5y-y)⇒4y*12,5=150; 50y=150⇒y=3; x=15
Скорость катера в стоячей воде - 15
скорость течения - 3