М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Samatova03
Samatova03
17.09.2022 16:10 •  Алгебра

1. решите систему уравнений методом подстановки: а. y=x+1 , 5x+2y=16 б. x=2y-3 , 3x+2y=7 2. : два числа в сумме 77. найдите эти числа, если 2/3 одного числа составляют 4/5 другого.

👇
Ответ:
11715
11715
17.09.2022

1. Решите систему уравнений методом подстановки:

а. y=x+1 , 5x+2y=16

5х+2(х+1)=16

5х+2х=16-2

7х=14

х=2

у=2+1=3

б. x=2y-3 , 3x+2y=7

3*(2у-3)+2у=7

6у-9+2у=7

8у=16

у=2

х=2*2-3=4-3=1

2. Задача:

Два числа в сумме дают 77. Найдите эти числа, если 2/3 одного числа составляют 4/5 другого.

1 число - х

2 число-у

составляем систему

х+у=77

2/3х=4/5у

из 1 ур-ия выражаем х

х=77-у

подставляем во 2 ур-ие

2/3(77-у)=4/5у

154/3-2/3у=4/5у

-2/3у-4/5у=-154/3

(-10-12)/15у=-154/3

22у/15=154/3

66у=2310

у=35

х=77-35=42

4,5(37 оценок)
Открыть все ответы
Ответ:
MihailBobr
MihailBobr
17.09.2022
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.
4,4(14 оценок)
Ответ:
sahin123321
sahin123321
17.09.2022

Найти частное решение линейного неоднородного уравнения 2-го порядка.

Алгоритм решения неоднородного ДУ следующий:

1) Сначала нужно найти общее решение соответствующего однородного уравнения y``+y`-2y=0

Составим и решим характеристическое уравнение:

\displaystyle k^2+k-2=0\\\\D=1+8=9\\\\k_1=1; k_2=-2

получены различные действительные корни, поэтому общее решение:

\displaystyle y=C_1*e^{-2x}+C_2*e^{x}

2) Теперь нужно найти какое-либо частное решение  неоднородного уравнения

в правой части 4e²ˣ-2x+1. Значит предположу что частное решение неоднородного уравнения нужно искать в виде: y=Аe²ˣ+Bx+C

Найдём первую и вторую производную:

\displaystyle y`=(A*e^{2x}+Bx+C)`=2A*e^{2x}+B\\\\y``=(2A*e^{2x}+B)`=4A*e^{2x}

подставим в левую часть

\displaystyle y``+y`-2y=4A*e^{2x}+(2A*e^{2x}+B)-2(Ae^{2x}+Bx+C)=\\\\=4Ae^{2x}+2Ae^{2x}+B-2Ae^{2x}-2Bx-2C=\\\\=4Ae^{2x}-2Bx+(B-2C)

и теперь приравняем к правой

\displaystyle 4Ae^{2x}-2Bx+(B-2C)=4e^{2x}-2x+1

отсюда составим систему

\displaystyle \left \{ {{4A=4; -2B=-2} \atop {B-2C=1}} \right. \]\\\\A=1; B=1;C=0

3) Запишем общее решение неоднородного уравнения:

\displaystyle y=C_1e^{-2x}+C_2*e^{x}+e^{2x}+x

4) теперь найдем частное решение

y(0)=3; y`(0)=5

\displaystyle y(0)=C_1+C_2+1=3; C_1+C_2=2\\\\y`(0)=-2C_1+C_2+2=5; C_2-2C_1=3\\\\

решая систему получим

\displaystyle C_2=2-C_1\\\\2-C_1-2C_1=3; C_1=-\frac{1}{3}\\\\ C_2=\frac{7}{3}

\displaystyle y= -\frac{1}{3}e^{-2x}+\frac{7}{3}e^x+e^{2x}+x

4,5(98 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ