1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
7/Задание № 4:
Назовите такое значение параметра a, при котором неравенство ax>7x+2 не имеет решений.
ax>7x+2
ax-7x>2
(a-7)x>2
Если а=7, то неравенство 0>2 не имеет решений.
Если а>7, то решения x>2/(a-7)
Если а<7, то решения x<2/(a-7)
ОТВЕТ: 7
7/Задание № 3:
Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?
|x+2+|−x−4||−8=x
|x+2+|x+4||−8=x
Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.
ОТВЕТ: 2 корня
7/Задание № 1:
Сколько чётных двузначных чисел, которые при делении на сумму цифр числа дают неполное частное 7 и остаток 3?
РЕШЕНИЕ: Пусть это число АВ=10a+b. Тогда, 10a+b=7(a+b)+3.
10a+b=7a+7b+3
3a=6b+3
a=2b+1
2b=a-1
Учитывая, что:
- а и b цифры, то есть целые числа от 0 до 9, но а не ноль, поскольку AB двузначное число
- число AB должно быть четным, то проверять нечетные b нет смысла
- остаток должен быть меньше делителя, значит минимально возможная сумма (a+b) равна 4
b=0: a=2*0+1=1 - не может быть a+b=1<4
b=2: a=2*2+1=5, число 52
b=4: a=2*4+1=9, число 94
При b=6 и более а=2*6+1=13 и более - не соответствует цифре.
ОТВЕТ: 2 числа
7/Задание № 1:
Сколько чётных двузначных чисел, которые при делении на сумму цифр числа дают неполное частное 7 и остаток 3?
РЕШЕНИЕ: Пусть это число АВ=10a+b. Тогда, 10a+b=7(a+b)+3.
10a+b=7a+7b+3
3a=6b+3
a=2b+1
2b=a-1
Учитывая, что:
- а и b цифры, то есть целые числа от 0 до 9, но а не ноль, поскольку AB двузначное число
- число AB должно быть четным, то проверять нечетные b нет смысла
- остаток должен быть меньше делителя, значит минимально возможная сумма (a+b) равна 4
b=0: a=2*0+1=1 - не может быть a+b=1<4
b=2: a=2*2+1=5, число 52
b=4: a=2*4+1=9, число 94
При b=6 и более а=2*6+1=13 и более - не соответствует цифре.
ОТВЕТ: 2 числа
7/Задание № 3:
Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?
|x+2+|−x−4||−8=x
|x+2+|x+4||−8=x
Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.
ОТВЕТ: 2 корня
1) 12х=36
х=3
2) 8 - 4х = 2х - 16
-6х=-16-8
-6х=-24
х=4
3)нет икса
4) -1.9x=-9,5
x=5
5) 4\9x -1\6x= -5
5\18x=-5
x= -18