М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Прямая задана уравнением 2x+9y+36=0.найдите значение переменной х,если y=0

👇
Ответ:
fa7b3ar
fa7b3ar
07.02.2023

2x+9y=-36; 2x=-36; x=-18

4,7(50 оценок)
Открыть все ответы
Ответ:
14251714
14251714
07.02.2023

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

4,6(93 оценок)
Ответ:
LoVeR789
LoVeR789
07.02.2023

Задачка интересная, смотри, как такие решаются.

 

В таких задачках главное- последняя цифра числа, которое возводится в степень

 

В первом случае 2001 оканчивается на 1, а 1 в любой степени 1, поэтому и 2001 в любой степени оканчивается на 1.

 

Во втором случае число оканчивается на 9. Исследуем, на какую цифру будут оканчиваться степени 9

Степень      Последняя цифра 9^n

     1                              9

     2                              1

     3                              9

     4                              1

и т.д.  уже видно, что при возведении в чётную степень последняя цифра 1, в нечётную -  2

. Таким образом

1999^2002 оканчивается на 1 (2002 - чётное число)

1999^1333 оканчивается на 2 (1333 - нечётное число).

 

Вот, примерно, так.

Попробуй исследовать поведение последней цифры числа 2013^n, 1917^n. Получится интересней.

 

Ну и последнее. Всё это просто рассуждения, а как же это всё доказать, можешь ты спросить. Так же просто. Смотри, например, случай 1.

Любое число, оканчивающееся на 1 можно представить в виде 10*к +1. Значит его степень

(10*к+1)^n = 10^n*k^n + +1^n(это бином Ньютона) = 10*R +1.

то есть любое число, оканчивающееся на 1 в любой степени оканчивается на 1.

Так же через бином Ньютона доказывается и всё остальное.

Успехов!

 

Да, и ещё. Условие у тебя очень нечёткое, если в самом деле нет запятых, то в 1 - решение то же, а в 2 нужно поисследовать ещё на какую цифру оканчивются степени 2002, то есть 2

степень  посл. цифра 2^n

    1                   2

     2                  4

    3                    8

     4                   6

     5                   2

     6                   4

     7                    8

ну и тд. то есть это всегда чётное число, поэтому

(1999)^(2002^1333) оканчивается на 1, так как показатель чётный.

Вот теперь совсем всё.

Пиши четче задания! Видишь, как много может значить какая-то запятая!

 

4,5(17 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ