Само уравнение несложное)) про отбор корней из промежутка... вы написали слово "отрезок", а сам промежуток указали в круглых скобках (это важно)... если "отрезок", то скобки должны быть квадратные [-7π/2; -2π] и тогда в отборе три корня: {-7π/2; -5π/2; -7π/3} если для отбора указан промежуток, то решение на рисунке)) мне больше нравится считать дугами, т.е. от начала отсчета (положительного направления оси ОХ) идем ПО часовой стрелке и считаем четвертинками окружности =дугами по (π/2) радиан, пока не насчитаем 7 таких четвертинок (-7π/2) и отмечаем (закрашиваем, заштриховываем...) указанный промежуток (или отрезок) отмеченные корни, попавшие в заштрихованную область, и есть решение второй части упражнения... только их "назвать" нужно правильно... например, нижняя на оси ОУ точка соответствует углу и (+3π/2) и (-π/2) и (-5π/2) осталось выбрать нужное...из указанного промежутка...
x2+12x+80<0
x2+12x+80=0
D= 144-640= -496, значит корней нет, отсюда решением будет являться (-бесконечность;+бесконечность)