Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2
Если y(-x) = y(x), функция четная. Если y(-x) = -y(x) => нечетная.
1) y(-x) = 2tg(-x) - ctg(-x)/sin²(-x) = -2tgx - (-ctgx/sin²x) = -2tgx + ctgx/sin²x = -(2tgx - ctgx/sin²x) = -y(x) => нечетная.
2) y(-x) = 5cos²(-x) - (-x)*tg(-x) = 5cos²x + x*(-tgx) = 5cos²x - x*tgx = y(x) => четная.
3) y(-x) = 2sin(-x) - (-x)*cos(-x) + 5tg(-x) = -2sinx + xcosx - 5tgx = -(2sinx - x*cosx + 5tgx) = -y(x) => нечетная.
4) y(x) = 2*(-x)*tg(-x) / ctg²(-x) = -2x*(-tgx)/ctg²x = 2x*tgx/ctg²x = y(x) => четная
15) y(-x) = tg²(-x) - sin²(-x)/cos(-x) = tg²x - sin²x/cosx = y(x) => четная.
sin3x+sinx=sin2x
2sin((3x+x)/2)*cos((3x-x)/2)=sin(2x)
2sin(2x)*cos(x)=sin(2x)
2sin(2x)*cos(x)-sin(2x)=0
sin(2x)*(2cos(x)-1)=0
1) sin(2x)=0 => 2x=pi*n => x=pi*n/2
2) 2cos(x)-1=0 => 2cos(x)=1 => cos(x)=1/2 => x=±pi/3+2*pi*n