Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.
(3x-2)/(x-1)-(2x+3)/(x+3)=(12x+4)/(x^2+2x-3)
(3x^2+7x-6)/(x^2+2x-3)-(2x^2+x-3)/(x^2+2x-3)=(12x+4)/(x^2+2x-3)
x не равно 1
x не равно -3
x^2+6x-3=12x+4
x^2-6x-7=0
По теореме Виета:
x1=7
x2=-1
ответ: 7; -1