Пусть скорость первого поезда x км в час тогда второго y км в час общий путь 5x+3y=500 так как оба числа делятся на два получается 50x+30y=500 10(5x+3y)=500 5x+3y=500 (1) x-y=10 ( или 30 или 20). (2) так как числа должны делиться на 10 ,то подходят только числа 10, 20, 30 если в варианте x-y=10 получается отрицательный ответ y-x=10 решаемых систему 1 и 2 и проверяемых все три варианта 5x+3y=500 3x-3y=30 8x=530 не подходит 8x=590 не подходит 8x=560 подходит x=70 подставляем в исходное уравнение получаем y=50 скорость первого 70 км в ч скорость второго 50 км в ч.
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное) Применим метод Эйлера Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение Корни которого Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное) отсюда где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде: уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид