Корни: 2П, 7/3П, 5/3П
Объяснение:
cos(2x+П/2) + sin x = 0
cos 2x * cos П/2 - sin 2x * sin П/2 + sin x = 0
Заметим, что cos П/2 = 0, а sin П/2 = 1
sin x - sin 2x = 0
sin x - 2 * sin x * cos x = 0
sin x * (1 - 2 * cos x) = 0
Рассмотрим два случая:
1)
sin x = 0.
x = П*n, где n принадлежит множеству целых чисел.
2)
1 - 2 * cos x = 0
1 = 2 * cos x
1 / 2 = cos x
x1 = П / 3 + 2Пk, где k принадлежит множеству целых чисел.
x2 = - П / 3 + 2Пr, где r принадлежит (ВНЕЗАПНО) множество целых чисел.
Осталось отобрать корни на промежутке [1.5П; 2.5П]
Подставляем во все наши 3 получившихся корня n = 1.
Получились корни:
"корень 1" = 2П
"корень 2" = 7/3 П
"корень 3" = 5/3 П
Вот и всё.
вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
Объяснение:
вот