Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Пусть а - первое число, тогда (а+1) - второе число, (а+2) - третье число. а² - квадрат первого числа, (а+1)(а+2) - произведение второго и третьего чисел. По условию задачи квадрат меньшего из них на 47 меньше произведения двух других. Составляем уравнение (а+1)(а+2)-a²=47; a²+2a+a+2-a²=47; 3a+2=47; 3a=47-2; 3a=45; a=45/3=15. Первое число равно 15, второе число равно 15+1=16, третье число равно 15+2=17. ответ: 15; 16; 17. Схема задачи: Дано: а, а+1, а+2 - последовательные натуральные числа Известно: а² - квадрат меньшего числа, (а+1)(а+2) - произведение двух других, 47 - разность произведения двух других чисел и меньшего числа Уравнение: (а+1)(а+2)-а²=47 Решение уравнения: см. выше ответ: 15; 16; 17.