2) - 14,3
4) 2,5
6) 60,33
8) 21,14
10) 22,5
12) 122
14) 231,04
16) 41
18) 1000
20) 15
22) 7
Объяснение:
2) число -20 - отрицательное, оно больше числа 5,7. Так что будем отнимать от -20 5,7. -20 - 5,7 = - 14,3. ответ в этом примере получится отрицательный, так как -20 больше
4) Для того, чтобы поделить десятичные дроби, нужно перенести все запятые вправо так, чтобы мы делили на целое число. В данном случае, мы будем делить 187,5 на 75. 187 делить на 75 = 2 (целая часть). После целой части мы ставим запятую и делим 375 (остаток от деления) на 75. И получаем 5. ответ: 2,5
6) Складываем целые части дробей с целыми, а десятичные с десятичными. 54 + 5, А 7 + 63. Не забываем добавлять остатки от десятичных частей к целым. Получаем 60,33
8)Самое обыкновенное умножение. Можно решать столбиком. Каждое число друг под другом. Умножаем все числа друг на друга. Получаем 21,14
10) Переводим смешанную дробь 1 в неправильную. (1 * 14) + 5 =
. Домножаем первую дробь на 2, чтобы получить общий знаменатель 14. Теперь решаем
=
. Умножаем на 12,6. Для удобства переведем 12,6 в неправильную дробь
. Числитель умножаем на числитель, а знаменатель на знаменатель. Получим
. Делим числитель на знаменатель и получаем 22,5
12) Переводим смешанные дроби в скобках в неправильные. Получим и
. Приводим их к общему знаменателю, равному 90. Для этого домножаем первую дробь на 10, а вторую на 9. Получим
и
. Отнимаем дроби друг от друга. Для этого отнимаем числитель 320 - 198. Получаем 122.
:
. Чтобы поделить первую дробь на вторую, вторую дробь нужно перевернуть. Получим
* 90. Сокращаем 90, получаем 122.
14) Чтобы не пришлось возводить оба больших числа в квадрат, вынесем степень за скобку . Получаем
. 152 умножаем на 152, получаем 23104. 23104 делим на 100, то есть переносим запятую на 2 числа (число нолей в 100) влево. Получаем 231,04
16) Переведем смешанную дробь 6 в неправильную =
. Делим дроби друг на друга. Для этого перевернем вторую дробь.
*
.
Сокращаем 13. 82 делим на 2. Получаем 41.
18) Сократим 24,2 и 0,242. Поделим числа друг на друга. Получим 100.
Сократим 35,6 и 3,56. Получим 10. 10 * 100 = 1000
20) Умножим на каждое число в скобках. Получим
.
. Вынесем числа из под корня. Получаем 10 + 5 = 15
22) Возводим в квадрат.
= 16
= 7. 16 * 7 = 112. 112 делим на 16, получаем 7
1) проверяем условие при наименьшем возможном значении n.
n>5, значит проверяем условие при n=6
Верно!
2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:
3) Тогда при n=k+1 должно выполняться неравенство:
Вернемся к неравенству из второго пункта и домножим его на 2:
Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:
по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)
Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5
Если , а
, при k>5
То есть, , при k>5, то по закону транзитивности:
, при k>5 - ч.т.д