1) x²-8x+20=0
D=(-8)²-4*20=16-80=-64<0 ⇒ нет действительных корней ⇒ нельзя разложить на множители квадр. трёхчлен
2)х²-1=(х-1)(х+1)
3)х²-8х+15=(х-3)(х-5) , так как
D=(-8)²-4*15=64-60=4>0 ⇒ есть два действ. корня
х₁=(8-2)/2=3 , х₂=(8+2)/2=5
4)х²-9х+20=(х-4)(х-5) , так как
D=(-9)²-4*20=81-80=1>0 ⇒ есть два действ. корня
х₁=4 , х₂=5
Примечание: если D=0, то есть два равных корня х₁=х₂
если D<0, то нет действ. корней, а есть комплексные корни
Квадратный трёхчлен типа ах² + вх + с нельзя разложить на множители, если уравнение ах² + вх + с = 0 не имеет решений.
Проверим, имеют ли решения заданные трёхчлены, находя дискриминант D
1) x²+3x-1
решаем уравнение x²+3x-1 = 0
D = 9 + 4 = 13 (два решения)
2) x²+3x+1
решаем уравнение x²+3x+1 = 0
D = 9 - 4 = 5 (два решения)
3) x²+3x+7
решаем уравнение x²+3x+7 = 0
D = 9 - 28 = -19 (нет решения)
4) x²+6x-13
решаем уравнение x²+6x-13 = 0
D = 36 +52 = 88 (два решения)
ответ: квадратный трёхчлен 3) x²+3x+7 нельзя разложить на линейные множители
2 * ( 11 - 3Y ) + Y^2 = 14
22 - 6Y + Y^2 = 14
Y^2 - 6Y + 8 = 0
D = 36 - 32 = 4 ; √ D = 2
Y1 = ( 6 + 2 ) : 2 = 4
y2 = ( 6 - 2 ) : 2 = 2
X1 = 11 - 12 = - 1
X2 = 11 - 6 = 5
ОТВЕТ ( - 1 ; 4 ) ; ( 5 ; 2 )